Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Front Immunol ; 15: 1344878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444844

RESUMO

Protease inhibitors regulate various biological processes and prevent host tissue/organ damage. Specific inhibition/regulation of proteases is clinically valuable for treating several diseases. Psoriasis affects the skin in the limbs and scalp of the body, and the contribution of cysteine and serine proteases to the development of skin inflammation is well documented. Cysteine protease inhibitors from ticks have high specificity, selectivity, and affinity to their target proteases and are efficient immunomodulators. However, their potential therapeutic effect on psoriasis pathogenesis remains to be determined. Therefore, we tested four tick cystatins (Sialostatin L, Sialostatin L2, Iristatin, and Mialostatin) in the recently developed, innate immunity-dependent mannan-induced psoriasis model. We explored the effects of protease inhibitors on clinical symptoms and histological features. In addition, the number and percentage of immune cells (dendritic cells, neutrophils, macrophages, and γδT cells) by flow cytometry, immunofluorescence/immunohistochemistry and, the expression of pro-inflammatory cytokines (TNF-a, IL-6, IL-22, IL-23, and IL-17 family) by qPCR were analyzed using skin, spleen, and lymph node samples. Tick protease inhibitors have significantly decreased psoriasis symptoms and disease manifestations but had differential effects on inflammatory responses and immune cell populations, suggesting different modes of action of these inhibitors on psoriasis-like inflammation. Thus, our study demonstrates, for the first time, the usefulness of tick-derived protease inhibitors for treating skin inflammation in patients.


Assuntos
Dermatite , Psoríase , Humanos , Inibidores de Cisteína Proteinase , Mananas , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Inflamação/tratamento farmacológico , Inibidores de Proteases , Imunidade Inata , Endopeptidases , Peptídeo Hidrolases
2.
Stem Cell Res ; 76: 103357, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412658

RESUMO

INF2 mutations cause Charcot-Marie-Tooth disease (CMT), and /or focal segmental glomerulosclerosis (FSGS) in an autosomal dominant inheritance mode, whose underlying mechanism remainsunclear. Here, we report the generation of an iPSC line from a female patient with CMT and FSGS. The iPSC line from the patient's PBMCscarried aheterozygous INF2 deletion mutation (c.315_323delGCGCGCCGT) within the conserved E2. This line exhibited a normal karyotype, high expression of pluripotency markers, and trilineage differentiation potential. This line can be used to dissect the complex pathomechanism through further induction of differentiation into related cells and as a drug screening tool for INF2-associated diseases.


Assuntos
Doença de Charcot-Marie-Tooth , Glomerulosclerose Segmentar e Focal , Células-Tronco Pluripotentes Induzidas , Humanos , Feminino , Glomerulosclerose Segmentar e Focal/genética , Doença de Charcot-Marie-Tooth/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Forminas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação
3.
Int J Biol Macromol ; 259(Pt 2): 129289, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211910

RESUMO

FS145, a protein containing a WGD motif, was previously described from the salivary transcriptome of the flea Xenopsylla cheopis. Nevertheless, its biological function and complete structure are still uncertain. Herein, FS145 was confirmed to adopt a common αßß structure with the WGD motif exposed on its surface and located right at the top of a loop composed of residues 72-81. Furthermore, FS145 dose-dependently inhibited the proliferation, adhesion, migration, and tube formation of HUVECs by not only binding to integrin αvß3 but also by subsequently inactivating the FAK/Src/MAPK pathway along with the reduction of the expression of MMP-2, MMP-9, VEGFA, bFGF, Ang2, Tie2, HIF-1α, and FAK. Moreover, FS145 also inhibited aortic vessel sprout and showed strong anti-angiogenic activities as assessed ex vivo, by employing the rat aortic ring assay, chick embryo chorioallantoic membrane, and zebrafish embryo models. Altogether, our results suggest that FS145 suppresses angiogenesis ex vivo and in vitro by blocking integrin αvß3. The current study reveals the first anti-angiogenesis disintegrin with WGD motif from invertebrates and provides a beneficial pharmacological activity to inhibit abnormal angiogenesis.


Assuntos
Desintegrinas , Sifonápteros , Embrião de Galinha , Ratos , Animais , Desintegrinas/farmacologia , Desintegrinas/química , Integrina alfaVbeta3/metabolismo , Sifonápteros/metabolismo , 60489 , Peixe-Zebra/metabolismo , Células Cultivadas , Neovascularização Fisiológica , Movimento Celular , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química
4.
Zool Res ; 45(1): 108-124, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114437

RESUMO

Parkinson's disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog ( Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αßß conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP +)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP +-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.


Assuntos
Discinesias , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/uso terapêutico , 1-Metil-4-fenilpiridínio/farmacologia , 1-Metil-4-fenilpiridínio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Catelicidinas/metabolismo , Discinesias/tratamento farmacológico , Discinesias/veterinária , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Doença de Parkinson/veterinária
5.
Stem Cell Res ; 74: 103286, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141357

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Affected patients experience gradual loss of their spinal cord and cortical motor neurons with consequent muscle weakness and emaciation, and eventual respiratory failure. The pathogenesis of ALS remains largely unknown although the FUS (sarcoma fusion gene) gene is known to be one of the major pathogenic genes. We have generated an induced pluripotent stem cell line SMUSHi002-A from an ALS patient who carries a heterozygous mutation c.1562G > A in FUS. This cell line will serve as a useful model to investigate disease pathogenesis and develop potential therapeutic approaches for ALS.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Esclerose Amiotrófica Lateral/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios Motores/metabolismo , Mutação/genética , Proteína FUS de Ligação a RNA/genética
6.
J Med Chem ; 66(23): 16002-16017, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38015459

RESUMO

Wound healing is a complex process and remains a considerable challenge in clinical trials due to the lack of ideal therapeutic drugs. Here, a new peptide TK-HR identified from the skin of the frog Hoplobatrachus rugulosus was tested for its ability to heal cutaneous wounds in mice. Topical application of TK-HR at doses of 50-200 µg/mL significantly accelerated wound closure without causing any adverse effects in the animals. In vitro and in vivo investigations proved the regulatory role of the peptide on neutrophils, macrophages, keratinocytes, and vein endothelial cells involved in the inflammatory, proliferative, and remodeling phases of wound healing. Notably, TK-HR activated the MAPK and TGF-ß-Smad signaling pathways by acting on NK1R in RAW264.7 cells and mice. The current work has identified that TK-HR is a potent wound healing regulator that can be applied for the treatment of wounds, including diabetic foot ulcers and infected wounds, in the future.


Assuntos
Células Endoteliais , Receptores da Neurocinina-1 , Camundongos , Animais , Receptores da Neurocinina-1/metabolismo , Pele/metabolismo , Cicatrização , Peptídeos/farmacologia , Medicina Tradicional
7.
Int J Oral Sci ; 15(1): 46, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752101

RESUMO

Hereditary gingival fibromatosis (HGF) is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity. Five distinct loci related to non-syndromic HGF have been identified; however, only two disease-causing genes, SOS1 and REST, inducing HGF have been identified at two loci, GINGF1 and GINGF5, respectively. Here, based on a family pedigree with 26 members, including nine patients with HGF, we identified double heterozygous pathogenic mutations in the ZNF513 (c.C748T, p.R250W) and KIF3C (c.G1229A, p.R410H) genes within the GINGF3 locus related to HGF. Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo. ZNF513, a transcription factor, binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts. Furthermore, a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513 (p.R250W) or Kif3c (p.R412H) alone do not led to clear phenotypes with gingival fibromatosis, whereas the double mutations led to gingival hyperplasia phenotypes. In addition, we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1. Moreover, the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels. ZNF513 combined with KIF3C regulates gingival fibroblast proliferation, migration, and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways. In summary, these results demonstrate ZNF513 + KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.


Assuntos
Fibromatose Gengival , Cinesinas , Animais , Humanos , Camundongos , Fibromatose Gengival/genética , Fibromatose Gengival/patologia , Gengiva , Cinesinas/genética , Mutação/genética , Fosfatidilinositol 3-Quinases/genética
8.
Chem Commun (Camb) ; 59(79): 11827-11830, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37712301

RESUMO

We report well-dispersed highly emitting perovskite emitters synthesized via the surfactant-assisted ball-milling method. Both the emitting peaks and the colour purity of the synthesized perovskite emitters can be effectively tuned through additive functionalization and precursor engineering.

9.
J Med Chem ; 66(17): 11869-11880, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37610210

RESUMO

Acute pancreatitis (AP) is a serious inflammatory disorder and still lacks effective therapy globally. In this study, a novel Ranacyclin peptide, Ranacin, was identified from the skin of Pelophylax nigromaculatus frog. Ranacin adopted a compact ß-hairpin conformation with a disulfide bond (Cys5-Cys15). Ranacin was also demonstrated effectively to inhibit trypsin and have anticoagulant and antioxidant activities in vitro. Furthermore, the severity of pancreatitis was significantly alleviated in l-Arg-induced AP mice after treatment with Ranacin. In addition, structure-activity studies of Ranacin analogues confirmed that the sequences outside the trypsin inhibitory loop (TIL), especially at the C-terminal side, might be closely associated with the efficacy of its trypsin inhibitory activity. In conclusion, our data suggest that Ranacin can improve pancreatic injury in mice with severe AP through its multi-activity. Therefore, Ranacin is considered a potential drug candidate in AP therapy.


Assuntos
Pancreatite , Animais , Camundongos , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doença Aguda , Tripsina , Anfíbios , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico
10.
Eur J Pharmacol ; 956: 175941, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37536626

RESUMO

Chansu, a mixture extracted from Duttaphrynus melanostictus or Bufo gargarizans Cantor, is a traditional Chinese medicine with a broad range of medical applications. However, the peptides/proteins in it have not received adequate attention. Herein, a Cathelicidin-DM-derived peptide named Cath-DM-NT was identified from the skin of D. melanostictus. Previous studies have shown that Cathelicidin-DM has significant antibacterial activity, while Cath-DM-NT has no antibacterial activity. In this study, Cath-DM-NT is found to have lectin-like activity which can agglutinate erythrocytes and bacteria, and bind to lipopolysaccharide (LPS). In addition, Cath-DM-NT has antioxidant activity, which can scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide (NO) radicals and reduce Fe3+. Consistently, Cath-DM-NT can protect PC12 cells from H2O2-induced oxidative damage and carrageenan-induced paw edema, reduce malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation, and restore superoxide dismutase (SOD) and glutathione (GSH) levels. Our study suggests that Cath-DM-NT can serve as a lead compound for the development of drugs with dual lectin and antioxidant effects.


Assuntos
Antioxidantes , Catelicidinas , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Lectinas/farmacologia , Peróxido de Hidrogênio/farmacologia , Glutationa , Bufonidae
11.
Toxins (Basel) ; 15(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37235381

RESUMO

Research has been conducted to investigate the potential application of scorpion venom-derived peptides in cancer therapy. Smp43, a cationic antimicrobial peptide from Scorpio maurus palmatus venom, has been found to exhibit suppressive activity against the proliferation of multiple cancer cell lines. However, its impact on non-small-cell lung cancer (NSCLC) cell lines has not been previously investigated. This study aimed to determine the cytotoxicity of Smp43 towards various NSCLC cell lines, particularly A549 cells with an IC50 value of 2.58 µM. The results indicated that Smp43 was internalized into A549 cells through membranolysis and endocytosis, which caused cytoskeleton disorganization, a loss of mitochondrial membrane potential, an accumulation of reactive oxygen species (ROS), and abnormal apoptosis, cell cycle distribution, and autophagy due to mitochondrial dysfunction. Additionally, the study explored the in vivo protective effect of Smp43 in xenograft mice. The findings suggest that Smp43 has potential anticarcinoma properties exerted via the inducement of cellular processes related to cell membrane disruption and mitochondrial dysfunction.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Células A549 , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/metabolismo , Mitocôndrias/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial
12.
Curr Med Sci ; 43(3): 445-455, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37191939

RESUMO

OBJECTIVE: Acute lung injury (ALI) is an acute clinical syndrome characterized by uncontrolled inflammation response, which causes high mortality and poor prognosis. The present study determined the protective effect and underlying mechanism of Periplaneta americana extract (PAE) against lipopolysaccharide (LPS)-induced ALI. METHODS: The viability of MH-S cells was measured by MTT. ALI was induced in BALB/c mice by intranasal administration of LPS (5 mg/kg), and the pathological changes, oxidative stress, myeloperoxidase activity, lactate dehydrogenase activity, inflammatory cytokine expression, edema formation, and signal pathway activation in lung tissues and bronchoalveolar lavage fluid (BALF) were examined by H&E staining, MDA, SOD and CAT assays, MPO assay, ELISA, wet/dry analysis, immunofluorescence staining and Western blotting, respectively. RESULTS: The results revealed that PAE obviously inhibited the release of proinflammatory TNF-α, IL-6 and IL-1ß by suppressing the activation of MAPK/Akt/NF-κB signaling pathways in LPS-treated MH-S cells. Furthermore, PAE suppressed the neutrophil infiltration, permeability increase, pathological changes, cellular damage and death, pro-inflammatory cytokines expression, and oxidative stress upregulation, which was associated with its blockage of the MAPK/Akt/NF-κB pathway in lung tissues of ALI mice. CONCLUSION: PAE may serve as a potential agent for ALI treatment due to its anti-inflammatory and anti-oxidative properties, which correlate to the blockage of the MAPK/NF-κB and AKT signaling pathways.


Assuntos
Lesão Pulmonar Aguda , Periplaneta , Camundongos , Animais , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Periplaneta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos BALB C
13.
Chemosphere ; 328: 138576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019396

RESUMO

Concurrent effect of nanomaterials (NMs) and warming on plant performance remains largely unexplored. In this study, the effects of nanopesticide CuO and nanofertilizer CeO2 on wheat (Triticum aestivum) under optimal (22 °C) and suboptimal (30 °C) temperatures were evaluated. CuO-NPs exerted a stronger negative effect on plant root systems than CeO2-NPs at tested exposure levels. The toxicity of both NMs could be attributed to altered nutrient uptake, induced membrane damage, and raised disturbance of antioxidative related biological pathways. Warming significantly inhibited root growth, which was mainly linked to the disturbance of energy metabolism relevant biological pathways. The toxicity of NMs was enhanced upon warming, with a stronger inhibition of root growth and Fe and Mn uptake. Increasing temperature increased the accumulation of Ce upon CeO2-NP exposure, while the accumulation of Cu was not affected. The relative contribution of NMs and warming to their combined effects was evaluated by comparing disturbed biological pathways under single and multiple stressors. CuO-NPs was the dominant factor inducing toxic effects, while both CeO2-NPs and warming contributed to the mixed effect. Our study revealed the importance of carefully considering global warming as a factor in risk assessment of agricultural applications of NMs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Triticum/metabolismo , Aquecimento Global , Cobre/metabolismo , Nanopartículas Metálicas/toxicidade
14.
Chemosphere ; 331: 138736, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37088215

RESUMO

Molybdenum disulfide (MoS2) nanosheets are being increasingly employed in various applications. It is therefore imperative to assess their potential environmental implications in a changing world, particularly in the context of global warming. Here, we assessed the effects of MoS2 nanosheets on wheat Triticum aestivum L. under today's typical climatic conditions (22 °C) and future climatic conditions (30 °C), respectively. The results showed that MoS2 nanosheets (10 and 100 Mo mg/L) did not significantly affect wheat plant growth, root morphological traits, and chlorophyll fluorescence, regardless of dose and temperature. However, the metabolic processes were significantly altered in T. aestivum upon exposure to individual MoS2 nanosheets and to a combination of MoS2 nanosheets and future global warming. As a non-specific protective strategy, the wheat plants that were under stress conditions maintained the stability of cell membranes and thus relieved cell injury by accumulating more glycerophospholipids. Warming additionally influenced the nitrogen and carbon pool reallocation in wheat root. MoS2 nanosheets mainly depleted a range of antioxidant metabolites involved in phenylpropanoid biosynthesis and taurine and hypotaurine metabolism, while warming activated vitamin B6 cofactors related to vitamin B6 metabolism. Metabolites involved in glutathione metabolism were uniquely upregulated while most metabolites associated with nucleotide metabolisms were uniquely downregulated in combination-treated wheat. Overall, wheat plants regulated a wide range of growth-related processes, including carbohydrate, amino acids, lipid, vitamins, and nucleotide metabolism, to maintain optimal metabolite pool sizes and eventually global metabolic homeostasis upon different stress conditions. Our findings provide novel insights into MoS2 nanosheets-mediated crop responses under global warming.


Assuntos
Molibdênio , Nanopartículas , Triticum , Carbono , Molibdênio/farmacologia , Molibdênio/química , Nucleotídeos
15.
Front Microbiol ; 14: 1102576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937273

RESUMO

Antimicrobial peptide is one important component of the first protective barrier of organisms. They not only have potent antimicrobial activity which can protect the body from the invading pathogens, but also participate in the immune regulation of the body. In this study, a Brevinin-1 peptide named by Brevinin-1GHd was identified from Hoplobatrachus rugulosus, and the similarity of mature peptide sequence among Brevinin-1GHd, Brevinin-1HL and Brevinin-1GHa supported the close species relationship between H. rugulosus, Hylarana latouchii and Hylarana guertheri. Moreover, the secondary structure of Brevinin-1GHd was found to possess α-helical characteristics and high thermal stability. In addition, Brevinin-1GHd could bind to LPS with a Kd value of 6.49 ± 5.40 mM and suppress the release of TNF-α, NO, IL-6 and IL-1ß by inactivation of MAPK signaling pathway in RAW 264.7 cells induced by LPS. Furtherly, Brevinin-1GHd had a significant inhibitory effect on acute edema development in the right paw of mice injected by carrageenan. Thus, the significant LPS-neutralizing and anti-inflammatory activities of Brevinin-1GHd were demonstrated in this study, which made it become the first Brevinin-1 family peptide with anti-inflammatory activity reported so far, and the biological activity of Brevinin-1GHd made it promising to be a novel therapeutic drug for infectious inflammation.

16.
Biochem Pharmacol ; 210: 115471, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893813

RESUMO

Septic shock caused by Gram-positive bacteria continues to be a major cause of morbidity and mortality in intensive care units globally. Most Temporins are excellent growth inhibitors of gram-positive bacteria and candidates for developing antimicrobial treatments due to their biological action and small molecular weight. In this study, a novel Temporin peptide from the skin of Fejervarya limnocharis frog, named as Temporin-FL, was characterized. Temporin-FL was found to adopt typical α-helical conformation in SDS solution and to exhibit selective antibacterial activity against Gram-positive bacteria through a membrane destruction mechanism. Accordingly, Temporin-FL showed protective effects against Staphylococcus aureus-induced sepsis in mice. Finally, Temporin-FL was demonstrated to exert anti-inflammatory effects by neutralizing the action of LPS/LTA and by inhibiting MAPK pathway activation. Therefore, Temporin-FL represents a novel candidate for moleculartherapy of Gram-positive bacterial sepsis.


Assuntos
Anti-Infecciosos , Choque Séptico , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Sequência de Aminoácidos , Proteínas de Anfíbios/farmacologia , Proteínas de Anfíbios/uso terapêutico , Proteínas de Anfíbios/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Ranidae/metabolismo , Pele , Bactérias Gram-Positivas , Choque Séptico/metabolismo , Testes de Sensibilidade Microbiana
17.
Acta Pharm ; 73(1): 145-155, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36692462

RESUMO

Voltage-gated K+ (Kv) channels play a role in the cellular processes of various cancer cells, including lung cancer cells. We previously identified and reported a salivary protein from the Xenopsylla cheopis, FS48, which exhibited inhibitory activity against Kv1.1-1.3 channels when assayed in HEK 293T cells. However, whether FS48 has an inhibitory effect on cancer cells expressing Kv channels is unclear. The present study aims to reveal the effects of FS48 on the Kv channels and the NCI-H460 human lung cancer cells through patch clamp, MTT, wound healing, transwell, gelatinase zymography, qRT-PCR and WB assays. The results demonstrated that FS48 can be effective in suppressing the Kv currents, migration, and invasion of NCI-H460 cells in a dose-dependent manner, despite the failure to inhibit the proliferation. Moreover, the expression of Kv1.1 and Kv1.3 mRNA and protein were found to be significantly reduced. Finally, FS48 decreases the mRNA level of MMP-9 while increasing TIMP-1 mRNA level. The present study highlights for the first time that blood-sucking arthropod saliva-derived protein can inhibit the physiological activities of tumour cells via the Kv channels. Furthermore, FS48 can be taken as a hit compound against the tumour cells expressing Kv channels.


Assuntos
Neoplasias , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Xenopsylla , Animais , Humanos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Xenopsylla/genética , Xenopsylla/metabolismo , Glândulas Salivares/metabolismo , RNA Mensageiro/metabolismo
18.
Toxins (Basel) ; 14(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287985

RESUMO

Scorpion-venom-derived peptides have become a promising anticancer agent due to their cytotoxicity against tumor cells via multiple mechanisms. The suppressive effect of the cationic antimicrobial peptide Smp24, which is derived from the venom of Scorpio Maurus palmatus, on the proliferation of the hepatoma cell line HepG2 has been reported earlier. However, its mode of action against HepG2 hepatoma cells remains unclear. In the current research, Smp24 was discovered to suppress the viability of HepG2 cells while having a minor effect on normal LO2 cells. Moreover, endocytosis and pore formation were demonstrated to be involved in the uptake of Smp24 into HepG2 cells, which subsequently interacted with the mitochondrial membrane and caused the decrease in its potential, cytoskeleton reorganization, ROS accumulation, mitochondrial dysfunction, and alteration of apoptosis- and autophagy-related signaling pathways. The protecting activity of Smp24 in the HepG2 xenograft mice model was also demonstrated. Therefore, our data suggest that the antitumor effect of Smp24 is closely related to the induction of cell apoptosis, cycle arrest, and autophagy via cell membrane disruption and mitochondrial dysfunction, suggesting a potential alternative in hepatocellular carcinoma treatment.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Venenos de Escorpião , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Escorpiões/metabolismo , Venenos de Escorpião/metabolismo , Espécies Reativas de Oxigênio , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/metabolismo , Proliferação de Células , Potencial da Membrana Mitocondrial
19.
Toxins (Basel) ; 14(9)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36136528

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of death in lung cancer due to its aggressiveness and rapid migration. The potent antitumor effect of Smp24, an antimicrobial peptide derived from Egyptian scorpion Scorpio maurus palmatus via damaging the membrane and cytoskeleton have been reported earlier. However, its effects on mitochondrial functions and ROS accumulation in human lung cancer cells remain unknown. In the current study, we discovered that Smp24 can interact with the cell membrane and be internalized into A549 cells via endocytosis, followed by targeting mitochondria and affect mitochondrial function, which significantly causes ROS overproduction, altering mitochondrial membrane potential and the expression of cell cycle distribution-related proteins, mitochondrial apoptotic pathway, MAPK, as well as PI3K/Akt/mTOR/FAK signaling pathways. In summary, the antitumor effect of Smp24 against A549 cells is related to the induction of apoptosis, autophagy plus cell cycle arrest via mitochondrial dysfunction, and ROS accumulation. Accordingly, our findings shed light on the anticancer mechanism of Smp24, which may contribute to its further development as a potential agent in the treatment of lung cancer cells.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Humanos , Neoplasias Pulmonares/metabolismo , Mitocôndrias , Proteínas Mitocondriais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escorpiões/metabolismo , Serina-Treonina Quinases TOR/metabolismo
20.
Oxid Med Cell Longev ; 2022: 2615178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105482

RESUMO

Amphibian skin is acknowledged to contain an antioxidant system composed of various gene-encoded antioxidant peptides, which exert significant effects on host defense. Nevertheless, recognition of such peptides is in its infancy so far. Here, we reported the antioxidant properties and underlying mechanism of a new antioxidant peptide, brevinin-1FL, identified from Fejervarya limnocharis frog skin. The cDNA sequence encoding brevinin-1FL was successfully cloned from the total cDNA of F. limnocharis and showed to contain 222 bp. The deduced mature peptide sequence of brevinin-1FL was FWERCSRWLLN. Functional analysis revealed that brevinin-1FL could concentration-dependently scavenge ABTS+, DPPH, NO, and hydroxyl radicals and alleviate iron oxidation. Besides, brevinin-1FL was found to show neuroprotective activity by reducing contents of MDA and ROS plus mitochondrial membrane potential, increasing endogenous antioxidant enzyme activity, and suppressing H2O2-induced death, apoptosis, and cycle arrest in PC12 cells which were associated with its regulation of AKT/MAPK/NF-κB signal pathways. Moreover, brevinin-1FL relieved paw edema, decreased the levels of TNF-α, IL-1ß, IL-6, MPO, and malondialdehyde (MDA), and restored catalase (CAT) and superoxide dismutase (SOD) activity plus glutathione (GSH) contents in the mouse injected by carrageenan. Together, these findings indicate that brevinin-1FL as an antioxidant has potent therapeutic potential for the diseases induced by oxidative damage. Meanwhile, this study will help us further comprehend the biological functions of amphibian skin and the mechanism by which antioxidants protect cells from oxidative stress.


Assuntos
Proteínas de Anfíbios , Antioxidantes , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Proteínas de Anfíbios/uso terapêutico , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carragenina , DNA Complementar , Peróxido de Hidrogênio/metabolismo , Camundongos , Estresse Oxidativo , Ranidae , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...